无线充电,就像科幻中的黑科技一样,充满了奇幻与未知。如今,这一技术正逐渐进入人们的视觉:无线充电的台灯、无线充电的电动汽车和即将无线充电的Iphone8……无线充电到底是如何实现的,又该如何测试呢?无线充电的普及可以说得益于电动汽车产业的快速发展,因为,给电动汽车充电有线充电桩占地面积大、操作复杂、磨损率高等问题始终困扰着电动汽车的用户们。这才推动了无线充电技术的快速发展,本文主要针对电动汽车的无线充电对应解析与分享。数字示波器的一个捕获周期连续多个捕获周期内,死区时间越长,相对的有效捕获时间就越短,一旦示波器的波形捕获率过低,这样就有可能导致异常信号出现在死区时间内而被漏掉。由此可见示波器的波形捕获率对于能否捕捉低概率的异常信号是很关键的,信号里面随机的异常信号及偶发信号往往是无法被预测的,波形捕获率越高,越有利于捕获低概率的信号!那么,我们如何验证那些示波器厂家所标称的几十万甚至上百万的波形捕获率的真呢?测量示波器的波形捕获率并不难,大多数示波器都会一个触发输出信号,通常用于使其他仪器与示波器的触发同步,我们可以通过频率计以及其他示波器来测量这个触发信号的平均频率,进而测量出待测示波器的波形捕获率。我司柔性线圈电流传感器系列(带积分器),即RogowskiCoil(洛氏线圈)电流传感器,采用 的罗氏线圈技术,是一个在非铁磁性材料上均匀缠绕的环形线圈,无磁滞效应,几乎为零的相位误差,无磁饱和现象,线性度极高。柔性线圈是电流对时间的微分,积分器通过对输出电压信号进行积分(~1V),真实还原被测电流,输出完整的信号波形,其测量电流范围可从1安培到几万安。主要用于电流、高次谐波电流(可达4次)、复杂波形电流、瞬态冲击电流、相位、电能、功率、功率因数等检测;配带积分器后可更便捷地集成到其他测试设备,如电能质量分析仪、谐波分析仪、电力参数记录仪、相位检测分析仪、工业控制装置、示波器、高精度数字多用表、瞬态冲击记录仪、分布式测量系统、保护系统等。
欢迎访问##湖北潜江WHTSC-40GT动态无功调节器##股份集团
湖南盈能电力科技有限公司建有科技大楼、研发中心、自动化公区及标准生产车间,生产线配备了 的试验设备,制定了系统发软件、通讯协议安全可靠,性能测试稳定,并与国内大学单片机中心组成为产学研联合体。盈能电力主要分为四大生产事业部运营:电气自动化事业部、高压电器事业部、智能仪表事业部、低压电器事业部。公司现拥有多名 工程师,几 技术人才,近百名生产员工。 yndl1381
方法要领:使用万用表的“Ω×1”挡检测通路电阻,必要时应将测试点刮,焊干净后再进行检测,以防止接触电阻过大,引起测量误差。对插接件检测时,可通过摆动插接件来测其接触电阻。若阻值大小不定,说明有接触 故障。使用万用表的“Ω×1k”或“Ω×10k”挡检测电容器电容值大小和漏电程度。使用万用表“Ω×1k”挡检测小功率晶体管,使用“Ω×100”挡检测中功率晶体管,使用“Ω×10”挡检测大功率管。电源机时间的测试机时间(TurnOnTim:输入电压始供电给电源时到电源输出的电压达到要求电压值Va时的时间,如上图所示。测试方法:启动测试:选择启动测试触发源为外部触发,可选用我司IT65C/D系列直流电源或IT76系列交流电源作为待测电源的DC/AC输入,并通过模拟量接口同步信号给负载,当负载接收到TRI信号时,始测试;结束测试:选择结束测试触发源为电平触发方式,触发电平设定为Va,当待测电源输出电压达到Va时,停止测试;负载计算出两个触发信号之间的时间差,即为待测电源的机时间。
后期数据分析在完成封闭场地测试后,测试工程师们会对测试数据进行后期分析,并绘制非常直观的数据分析图。可以从分析后的数据中看出自动驾驶车辆与目标是否发生碰撞,自动驾驶车辆在以一定的加速度减速至速度为0时与目标之间是否还有一定的安全距离,其是否满足《重庆市自动驾驶道路测试准入测试规范》中对于自动紧急制动的要求。展望相信在如此严格且规范的自动驾驶测试下,重庆的自动驾驶上路是安全的,请对祖国的自动驾驶技术充满希望与期待,就在不远的未来,自动驾驶技术定能为人们的生活带来巨大改变。
欢迎访问##湖北潜江WHTSC-40GT动态无功调节器##股份集团